The 65th ASH Annual Meeting Abstracts

POSTER ABSTRACTS

652.MULTIPLE MYELOMA: CLINICAL AND EPIDEMIOLOGICAL

Unravelling Transplant-Ineligible Newly Diagnosed Multiple Myeloma Treatment in Real-World Practice in Spain. Carinae Study

Maria Casanova Espinosa ${ }^{1}$, Miguel Teodoro Hernández Garcia, MD PhD ${ }^{2}$, Juan Alfonso Soler Campos³, Susana Hernández Rodriguez ${ }^{4}$, Maria Jose Moreno Belmonte ${ }^{5}$, Miriam Concepcion Gonzalez Pardo, MD ${ }^{6}$, Mercedes Gironella Mesa', Felipe de Arriba de la Fuente ${ }^{8}$
${ }^{1}$ Hematology, Hospital Costa del Sol, Marbella, Spain
${ }^{2}$ Hospital Universitario de Canarias, Tenerife, Spain
${ }^{3}$ Hematology, Consorci Corporació Sanitària Parc Taulí, SABADELL, ESP
${ }^{4}$ Hematology, Hospital Universitario Basurto, Bizcaia, Spain
${ }^{5}$ Hematology, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, ESP
${ }^{6}$ Medical Affairs, Janssen-Cilag, Madrid, Spain
${ }^{7}$ Hematology, Hospital Universitari Vall d'Hebron, Barcelona, ESP
${ }^{8}$ Hematology, Hospital General Universitario Morales Meseguer, Murcia, Spain

Introduction: There is little data regarding real-world treatment patterns and outcomes of transplant-ineligible newly diagnosed multiple myeloma patients (TIE-NDMM) in Spain. In recent years, several treatment regimens have been authorized as effective options for TIE-NDMM, providing patients with better outcomes and quality of life, as evidenced in clinical trials (Mateos et al. Lancet 2020). However, the contribution of incorporating these new treatments into the daily therapeutic arsenal has not been widely explored.
Methods: Observational, ambispective, multicenter ongoing study on TIE-NDMM patients who started antineoplastic treatment in the context of daily clinical practice in Spanish hospitals. Group A: started treatment with a combination of ≥ 2 drugs, between Sep/01/2018 and Aug/31/19. Group B: started treatment with daratumumab in combination with bortezomib, melphalan and prednisone (DVMP group), between Sep/01/19 and Nov/30/20. Here, we present the efficacy and safety outcomes obtained in the second interim analysis after ≈ 24-month study initiation.
Results: 117 patients were recruited, and 108 were evaluable for efficacy in this interim analysis (group An=51; group B $n=57$). No significant differences were observed in basal clinical and demographics characteristics between groups (table 1): mean age 76.9 years; male (53.7\%); cardiopathy 28.7%; renal failure 25%; pulmonary obstructive disease 8.3%; peripheral neuropathy 2.8\%; median ECOG PS 1; most common myeloma type was IgG (49.5\%); 13.9% had a high-risk cytogenetic profile, defined by one of the following alterations: $\mathrm{t}(4 ; 14), \mathrm{t}(14 ; 16)$ and del 17 p 13 ; plasmacytoma 24.3%. More than 90% of the patients in group A started treatment with schemes based on bortezomib, lenalidomide, or both. Median follow-up was 36.3 versus 23.3 months for groups A and B, respectively, since the initiation of first-line treatment ($p<0,0001$). Probably in relation to the different follow-ups, the median PFS for Group A was 32.78 months and not reached for Group B ($p=0,1129$), figure 1. The progression rate at 18 months was 27.5% and 10.5% for Group A and B respectively ($p=0,0238$). Rates of \geq VGPR and \geq CR, were 60% and 30% in Group A whilst 75.4% and 33.3% in Group B, table $2.36 .9 \%$ of the patients showed adverse drug reactions (ADR) related to the first-line treatment during the prospective period. 10.6% of the reported ADRs were serious with no significant differences between groups. No unexpected ADRs were observed. Additional data will be presented at the Congress.
Conclusions: In this interim analysis, a significant clinical benefit has been identified in patients treated with DVMP, with improved PFS indicators vs. other treatment alternatives. Along with the deeper hematological responses observed, we expect this benefit to be consolidated in the final PFS analysis of the Carinae study. These real-world practice data continue to support the choice of daratumumab regimens in frontline TIE-NDMM patients.

Disclosures Casanova Espinosa: Abbvie: Membership on an entity's Board of Directors or advisory committees; Roche: Honoraria; Pfizer: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Takeda: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Sanofi: Consultancy, Hono-
raria, Membership on an entity's Board of Directors or advisory committees; Janssen-Cilag: Honoraria, Membership on an entity's Board of Directors or advisory committees; BMS/Celgene: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; GSK: Honoraria, Membership on an entity's Board of Directors or advisory committees.
Hernández Garcia: Amgen: Consultancy, Speakers Bureau; Janssen-Cilag: Consultancy, Speakers Bureau; BMS/Celgene: Consultancy, Speakers Bureau; Takeda: Consultancy; GSK: Consultancy. Soler Campos: BMS/Celgene: Consultancy, Speakers Bureau; Janssen-Cilag: Consultancy, Speakers Bureau; Abbvie: Consultancy, Speakers Bureau; Sanofi: Consultancy, Speakers Bureau; Roche: Consultancy; AstraZeneca: Speakers Bureau. Gonzalez Pardo: Janssen-Cilag: Current Employment. Gironella Mesa: Janssen-Cilag: Honoraria; BMS/Celgene: Honoraria; Takeda: Honoraria; Amgen: Honoraria. de Arriba de la Fuente: Janssen-Cilag: Honoraria; BMS/Celgene: Honoraria; Amgen: Honoraria; GSK: Honoraria; Takeda: Honoraria.

Table 1. Demographic and multiple myeloma characteristics at diagnosis

क्रcamina	IET	crosh	cews	P	
N	108	51	5		
Ase					
Nesion [rancel		notroe:81,	700780, 78.01	0.993 ${ }^{1}$	
$\operatorname{sex}(5)$				-xass	
Nase	$5153>8$	2019990	301520 wa		
teruk	50,6530	23150.109	2(6)/8)		
Crasoosty	3128.50	17ดูู		0.suen	
Osituctur pelmeary dinese	9 (8, $)^{(1)}$	3 3(5,94	6 (tasse	asss	
Peridherd mowosetry	312860	315.80	-0.0.0)	0.10280	
Rmaltave		16 (1, $x_{\text {a }}$)	21(19, 3 \%	¢, mavo	
ecoops now				-0.018"	
0	23 (12, $)^{4}$	7 (13,3)	16(2, 13)		
1	50 (1)0x	2 [0x.a\|c			
2	2] [2,) ${ }^{1}$	3 (13) $)^{4}$	15 (2,0)0		
s	8 8, \%	41780			
4	109\%	-10.050	2(2) $)^{\text {a }}$		
ma	13(120)	101909	30.500		
				Quase	
30	13 theos		Scksi]		
3000	32 cack	181830	$28(4,6)$		
\$0	splasis	230, 10	29 samy		
ma	1210209	21530	914580		
Mrelomatrpenioy					
45	50\%39	21 ung	2 c (50.0x)	-0.0en	
(0)	3515.7×2	15 ¢3, ${ }^{\text {a }}$	20135,30		
M	10151585)	3 (17en	818390		
Orenevetor	312880	1120000	$2(355)$	1.0000	
	806.000	519380	312.500	axan ${ }^{\text {a }}$	
	214000	113,30	1(423)	1.00000	
Dellizal	scrom	217, 0	$3 \mathrm{t12509}$	2.60150	
		Scese	20, 17.580		
			(1).301	eassiv	
Yes	6616.78	2918.000	$37(4.959$		
		2102000	20(35,15)		
				0,6035	
res	2512039	1120.0	150s,3\%)		
		3018.09	4203, 00		
			423,301	0.2935	
,	2412200	815580			
\%	3915319	19 (3)30	2035,394)		
${ }^{\prime \prime}$	$4013, \mathrm{ma}$	20180.200	20135,140		
Diose Mesers kiss		4 (7309)	$1(2) 89$		
				0.300w	
1	38(12905	s(11) ${ }^{\text {a }}$	12020,301		
\%	Sulsees	2almese	26165.008		
-	170930	10 [19008	7123.80		
na	29 (1)es)	7 (12) 7	12(21.18)		
 Bused on $0=50$ patiknts with detected oplagenetic tbsomal tien $\mathrm{n}-1$ patent without indormation abost spected hyte bsen leviens. masterewenéng beyod the tonemancow, ob both					

Figure 1
https://doi.org/10.1182/blood-2023-172708

